miércoles, 26 de febrero de 2014

martes, 25 de febrero de 2014

Resumen de cálculos para la etapa 3 - Part 5

El agua inyectada a la ruptura, Wft)t) se calcula usando la ecuación 7.144. Esta ecuación expresada en términos de volúmenes porosos contactados por el agua, será:

lunes, 24 de febrero de 2014

Resumen de cálculos para la etapa 3 - Part 4

Como A/Vp,, es conocido (ecuación 7.149), es obvio por la ecuación 7.150 que AN^ puede ser determinado si fo2 puede ser definido. ¿Cómo puede determinarse fo2 en cualquier tiempo después de la ruptura? Recuérdese que de la teoría de avance frontal, puede determinarse fu2 a partir de la curva de flujo fraccional (Figura 7.22) si Sw2, la saturación en el pozo productor, es conocida. Desafortunadamente, no se conoce Su,2 \ sin embargo, sí se sabe que Su 2 es el punto de la tangente a la curva de flujo fraccional definida por la línea tangente de la pendiente. De acuerdo con esto:
donde Q, es el volumen poroso de agua que ha sido inyectado durante el tiempo bajo estudio. Si Q, fuera conocido, es posible estimar la pendiente de la tangente usando la ecuación (7.152); entonces, Su,2 y fw¿ podrían determinarse de la curva de flujo fraccional (Figura 7.22).

viernes, 21 de febrero de 2014

martes, 18 de febrero de 2014

Etapa 4: Comportamiento después de la ruptura del agua

Esta etapa, que marca el comienzo de la producción de agua, se caracteriza por un aumento de: la razón de movilidad, la eficiencia de barrido areal y la relación aguapetróleo, y por una disminución de la tasa de producción de petróleo. La RAP está gobernada por la cantidad de petróleo y agua que fluye desde la región barrida del yacimiento, más la cantidad de petróleo desplazado a medida que la zona barrida aumenta. 
El agua y el petróleo que se producen de la zona barrida previamente dependen de los datos de flujo fraccional y se pueden calcular usando la teoría de avan- ce frontal descrita en el Capítulo 4. El petróleo que sale de la nueva porción barrida del yacimiento es desplazado por la saturación de agua inmediatamente detrás de la zona estabilizada, SwZ£, la cual se supone que es igual a la saturación de agua del frente, Su/. Considerando un intervalo de tiempo dado, el incremento de petróleo producido en la porción del yacimiento que no ha sido barrida, AN^ .dependerá del incremento de la eficiencia areal, AEA, del cambio de la saturación de agua en la nueva zona barrida (Sw2£ -Suv )y del volumen poroso, Vp. Es decir:

Resumen de cálculos en la etapa 3

1.   Selección de los valores de W,, desde Wu hasta Wlbl, usando un intervalo conveniente
2. Determinación de EA para cada Wt (ecuación 7.136)
3. Determinación de y para cada W, (Figura 7.20)
4. Cálculo de q, (ecuación 7.134)
5. Cálculo de q, promedio para cada intervalo
6. Cálculo de los incrementos de tiempo y el tiempo acumulado asociado con cada intervalo
7.   Cálculo de q() (ecuación 7.137)

8. Cálculo del petróleo acumulado recuperado (ecuación 7.138).

lunes, 17 de febrero de 2014

Etapa 3: Comportamiento desde el llene hasta la ruptura

El final del período de llene marca el comienzo de la producción secundaria de petróleo. En esta etapa se supone que la tasa total de producción de petróleo es igual a la tasa de inyección de agua. Como la tasa de inyección de agua puede determinarse usando la ecuación 7.134, la tasa de producción de petróleo en BNPD puede calcularse mediante:

sábado, 15 de febrero de 2014

Resumen de cálculos en la etapa 2:

1.   Cálculo de W., y W de los cálculos iniciales
2.   Obtención de q„ de la etapa 1 donde W, =W
3.   Cálculo de EA al llene (ecuación 7.136)
4.   Obtención de la razón de movilidad, M, a partir del paso 3 de los cálculos iniciales
5.   Determinación de y al llene, a partir de la Figura 7.20
6.   Cálculo de qlJfrsl, (ecuación 7.135)
7.   Cálculo de la tasa de inyección de agua al llene, qlf (ecuación 7.134)

8.   Cálculo del intervalo de tiempo requerido para la etapa 2 (ecuación 7.133).

viernes, 14 de febrero de 2014

Etapa 2: Comportamiento desde la interferencia hasta el llene - II

La razón de conductancia, y, es un factor determinado experimentalmente por Caudle y Witte que permite estimar el valor corregido de la tasa de inyección mediante la ecuación 7.134. Esta razón de conductancia se presenta gráficamente en la Figura 7.20 en función de la razón de movilidad, M, y de la eficiencia de barrido areal, Ea

La eficiencia de barrido areal requerida en la figura anterior se calcula mediante la siguiente ecuación:

jueves, 13 de febrero de 2014

Etapa 2: Comportamiento desde la interferencia hasta el llene - I

Hasta el momento de la interferencia (final de la primera etapa), la forma de los bancos de petróleo y agua es radial; pero desde ese momento, hasta el llene del espació dejado por el gas (segunda etapa) dentro del arreglo de 5 pozos, la forma del banco de petróleo cambiará continuamente. Por esta razón, no es posible expresar matemáticamente el comportamiento de la predicción. 
Como la duración de esta etapa es más corta que la de las otras, se debe calcular la tasa de inyección de agua al final de la etapa 1 y al comienzo de la etapa 3, suponiendo que qt cambia linealmente entre estos dos valores. Por lo tanto, el intervalo de tiempo entre la interferencia y el llene, vendrá dado por:
Los valores de W„ y W¡¡ se conocen por los cálculos iniciales. La tasa de inyección de agua a la interferencia, qu corresponde a la tasa de inyección al final de la etapa 1. La tasa de inyección al llene, q,f, así como las tasas de inyección desde el llene hasta la ruptura, se calculan mediante:

miércoles, 12 de febrero de 2014

Resumen de cálculos en la etapa 1

1. Seleccionar W¡ desde cero hasta WH. No existe ninguna regla para hacer esta selección; generalmente, 10 intervalos de igual AW¡ son adecuados. 
2. Calcular re para cada W, (ecuación 7.126). 
3. Calcular r para cada W( (ecuación 7.129). 
4. Calcular q, para cada W\ (ecuación 7.123). 5. Calcular la tasa promedio de inyección de agua para cada incremento de W,:
6. Calcular el tiempo requerido por cada incremento de W¡:
7. Calcular el tiempo acumulado para cada valor de W¡:

martes, 11 de febrero de 2014

Etapa 1: Comportamiento antes de la interferencia - II

Los radios de los bancos de agua y de petróleo requeridos por la ecuación 7.123 dependen de la cantidad de agua inyectada acumulada, Wt.
Como todo el agua inyectada durante la etapa 1 llena el espacio dejado por el gas en la región comprendida entre rwy re, se puede escribir:


donde W, es el agua inyectada acumulada en Bbl. Todo el agua inyectada estará dentro del banco de agua de radio r. Como la saturación promedio de agua en este banco es Supbt se puede escribir:

lunes, 10 de febrero de 2014

Etapa 1: Comportamiento antes de la interferencia - I


Durante este período se supone que los bancos de agua y de petróleo tienen forma radial, y que la ley de Darcy para flujo radial se puede usar para predecir la inyección de agua dentro del yacimiento. Considérense los pozos de inyección mostrados en la Figura 7.19. 
Para una presión diferencial constante, Ap, aplicada en el pozo de inyección, la tasa de inyección de agua antes de la interferencia vendrá dada por:
donde:

domingo, 9 de febrero de 2014

Cálculos iniciales para un solo estrato - IV

7. Se calcula el agua inyectada acumulada al momento del llene del gas:



8. Se calcula el agua inyectada acumulada al momento en que ocurre la ruptura de agua:

sábado, 8 de febrero de 2014

viernes, 7 de febrero de 2014

Cálculos iniciales para un solo estrato - II

4. Determinación de la eficiencia de barrido a la ruptura de agua, EAbt, usando la razón de movilidad del paso anterior, y las correlaciones disponibles, Figura 7.17. 
5. Se determina la máxima saturación de gas, , para lo cual el criterio de Craig, Geffen y Morse es válido con modificación, para los casos en los cuales la libre está por debajo de un máximo; o sea, si se logra el llene en la etapa del barrido cuando el frente de un arreglo de 5 pozos con el yacimiento lleno de líquido comienza a formar una cúspide. Esta máxima saturación se calcula en la forma siguiente:

jueves, 6 de febrero de 2014

Cálculos iniciales para un solo estrato - I

Antes de iniciar los detalles del procedimiento para la predicción durante cada una de las etapas, es conveniente realizar los siguientes cálculos:

miércoles, 5 de febrero de 2014

Método de Craig, Geffen y Morse

El método de Craig, Geffen y Morse considera los efectos de eficiencia areal, mecanismo de desplazamiento, estratificación e inyectividad variable, para predecir el comportamiento de yacimientos sometidos a inyección de agua en un arreglo de cinco pozos. El método es válido, exista o no gas inicialmente, suponiendo las siguientes condiciones: que no queda gas atrapado detrás del frente de invasión; que los cálculos pueden ser adaptados a otros tipos de arreglos, pero sin tomar en cuenta la presencia de un influjo de agua lateral o de fondo; y, que se dé un cubrimiento vertical de! 100% en cada capa del yacimiento estratificado. Craig y col.6 derivan ecuaciones y correlaciones experimentales que permiten determinar la eficiencia de barrido areal antes y después de la ruptura. Los cálculos se realizan en cuatro etapas: 
• Etapa 1: Se inicia cuando comienza la inyección de agua, y finaliza cuando los bancos de petróleo formados alrededor de los pozos inyectores adyacentes se ponen en contacto, encuentro que se denomina Interferencia. Esta etapa sólo tiene lugar si existe gas libre al comienzo de la invasión. 
• Etapa 2; Se extiende desde la interferencia hasta que todo el espacio dejado por el gas lo llene el agua inyectada. 
• Etapa 3: Se extiende desde el llene del gas hasta la ruptura de agua en los pozos productores. La producción de petróleo debido a la inyección de agua se inicia cuando comienza esta tercera etapa. Además, la producción de petróleo es una combinación del aumento de producción debido a la inyección y la continuación de la producción primaria. La producción de agua comienza al final de la etapa 3. 
• Etapa 4: Comprende el período desde la ruptura del agua hasta el límite económico. 

Las etapas 1,2 y 3 se ilustran en la Figura 7.16. 

En este estudio se presenta primero la predicción para un yacimiento con un solo estrato. La extensión del método para otros con varios estratos se presentará más adelante.

martes, 4 de febrero de 2014

Procedimiento para la predicción

El procedimiento que se sigue es: 
  1. Arreglar los datos de permeabilidad en orden decreciente y construir los gráficos adimensionales de permeabilidad, k\ y capacidad, C'a, en función del es- pesor adimensional de la formación, h'. 
  2. Dividir las curvas adimensionales de permeabilidad y capacidad en incrementos de igual espesor (10 intervalos aproximadamente) y seleccionar de las curvas los valores de k y C'a para representar cada estrato. Es decir, los valores de K y C'a para/?' = 0,1; 0,2; 0,3;..., 1. 
  3. Construir los gráficos de Np, RAP, qQ y qu en función del tiempo, según los cál- culos presentados en la Tabla 7.8. 

lunes, 3 de febrero de 2014

Tiempo, t

Como se presenta en la Tabla 7.8, las tasas de producción de petróleo se promedian para cada intervalo de producción; y el tiempo requerido para producir un incremento de petróleo, ANp, se calcula mediante la siguiente ecuación:

domingo, 2 de febrero de 2014

Petróleo producido, Np

El petróleo producido en cualquier tiempo se obtiene multiplicando el petróleo recuperable por el correspondiente Ei: calculado a ese tiempo. Como se ha indicado anteriormente, /Vp = N* EA* Eu* £,,. La eficiencia de desplazamiento se calcula aplicando la siguiente ecuación:

sábado, 1 de febrero de 2014

Tasas de producción de petróleo, qQ, y de agua, qw

Como se han supuesto condiciones de flujo continuo, la tasa total de producción del yacimiento es equivalente a la tasa de inyección, esto es: q0 +qw =qrDe lo anterior se deduce que la tasa de producción de agua puede calcularse con: