viernes, 30 de noviembre de 2012

Escalas de revoluciones por minuto (RPM).

La velocidad que el personal técnico espera utilizar en la barrena, indica los parámetros de vibración y resistencia al desgaste que se necesitarán para mantener un desgaste parejo de la barrena y prolongar su duración. Las barrenas de diamante se pueden utilizar mejor que las barrenas de roles a altas velocidades de rotación.

jueves, 29 de noviembre de 2012

Limitaciones de peso sobre barrena.

Cuando se encuentran situaciones de PSB limitado, una estructura de corte eficiente como un PDC tiene posibilidades de ofrecer un mayor Ritmo de Penetración (ROP) que una barrena de roles.

miércoles, 28 de noviembre de 2012

Restricciones de perforación

Los parámetros operativos deben corresponder a una escala aceptable para que una barrena de diamante ofrezca los mayores beneficios. Por lo general, los parámetros que no se corresponden con escalas reducirán la eficiencia del costo del producto. Cuando se encuentran estas situaciones se debe considerar una barrena de roles. Por el contrario, algunas restricciones brindan oportunidades para seleccionar una barrena de diamante.

martes, 27 de noviembre de 2012

Énfasis en los costos.

Indica la sensibilidad del personal con respecto al costo. La mayoría de las veces esto se traduce en barrenas de menor precio. Los Ingenieros de diseño y operación deben tomar en cuenta el número de oportunidades que afectan los costos de un pozo y que dependen del tiempo. Se debe recordar siempre que esto mejoraría si se selecciona una barrena de perforación de alta calidad. La barrena debe tener las cualidades que satisfagan las necesidades de aplicación de la compañía perforadora sin aumentar indebidamente su costo. Una barrena de diamante que pueda volver a utilizarse da lugar a costos más bajos de perforación. Así la compañía perforadora tendrá la oportunidad de utilizar un producto de alta tecnología que, en otro caso, sería una situación económica marginal.

lunes, 26 de noviembre de 2012

Energía hidráulica.

La energía hidráulica, de la cual el régimen de surgencia es un componente integral, proporciona la limpieza y enfriamiento a la barrena. Se refiere en términos de caballos de fuerza hidráulica por pulgada cuadrada (“hydraulic horse power per square inch”, HSI) de superficie en todas las secciones del fondo del pozo. Los análisis históricos mostrarán los parámetros comunes utilizados en el campo y qué oportunidades existen para una mejor utilización de la energía hidráulica por medio de la selección de las barrenas o de los parámetros de operación. Las barrenas de diamante deben funcionar de acuerdo con escalas hidráulicas específicas para asegurar su eficiente limpieza y enfriamiento. Los regímenes de surgencia insuficientes y el índice de potencia hidráulica (HSI) afectan el enfriamiento y pueden provocar daños térmicos en la estructura de los cortadores. La falta de la limpieza sólo hará que la barrena se embole, lo que provocará un rendimiento deficiente o nulo. Existen diseños de barrenas que aliviarán parcialmente algunas de estas condiciones, pero para alcanzar un rendimiento óptimo se deben utilizar los mejores parámetros de hidráulica en las aplicaciones de barrenas de diamante.

domingo, 25 de noviembre de 2012

Fluidos de perforación.

El tipo y la calidad del fluido de perforación que se utiliza en el pozo tienen un efecto muy importante en el rendimiento de la barrena. Los fluidos de perforación con base aceite mejoran el rendimiento de las estructuras de corte de PDC; el rendimiento del diamante natural y del TSP varía según la litología. El fluido de perforación base agua presenta más problemas de limpieza debido, en gran parte, a la reactividad de las formaciones a la fase acuosa del fluido de perforación. Los récords pueden determinar la variación y el nivel de efectividad de los fluidos de perforación que se usan en el campo.

sábado, 24 de noviembre de 2012

Coeficiente de penetración típico.

El coeficiente de penetración es una indicación de la dureza de la roca; no obstante una selección inadecuada de la barrena puede ocultar las características de dureza de la roca. Esto es particularmente válido cuando se elige una barrena demasiado dura para una aplicación. La barrena más dura, debido a la densidad de sus cortadores o la proyección de sus dientes, tiene un límite superior de coeficiente de penetración determinado por su diseño. Por lo general, a medida que se perfora más profundo, se espera utilizar barrenas cada vez más duras. El análisis de la resistencia de las rocas, ha revelado que este paradigma no siempre es válido y, en muchos casos, las barrenas más blandas pueden utilizarse con éxito en las partes más profundas del pozo.

viernes, 23 de noviembre de 2012

Análisis históricos

Un análisis objetivo de los pozos de correlación (pozos offset) ofrece la oportunidad de comprender las condiciones en el fondo del pozo, las limitaciones de su perforación y en algunos casos la adecuada selección de barrenas. 
Los análisis históricos comienzan con una colección de registros o récords de barrenas e información relacionada con el pozo. Se debe tener la precaución de que los registros de barrenas sean representativos de lo que será perforado en el pozo objetivo. La información también debe ser actualizada y reflejar los tipos de barrenas recientes, es decir, de menos de dos años de antigüedad. 
Por supuesto,esto no es posible en el caso de pozos de exploración o en los pozos de campos más antiguos que no han sido perforados recientemente. En estos casos, se dependerá principalmente de la información geológica y debería considerar el primer pozo como una referencia para las recomendaciones de las aplicaciones futuras.

El análisis de los registros de las barrenas puede ofrecer datos de gran valor si éstos se registran en forma precisa y completa.

jueves, 22 de noviembre de 2012

SELECCIÓN DE UNA BARRENA TRICÓNICA O DE CORTADORES FIJOS (PDC) PARA PERFORAR.

Criterios de selección de barrenas 
Objetivos de perforación 

Para el proceso de selección es fundamental conocer los objetivos de perforación, que incluyen todo tipo de requisitos especiales del personal para perforar el pozo. Esta información ayudará a determinar las mejores características de la barrena que requiere la aplicación y a concentrar sus esfuerzos en satisfacer las necesidades de Pemex y sus requisitos de perforación. Rendimiento. Uno de los principales objetivos del personal técnico es perforar el pozo en el menor tiempo posible. Esto significa orientar la selección de barrenas hacia la búsqueda del tipo que más duración tenga; se busca principalmente la máxima cantidad de metros en un tiempo de rotación aceptable, eliminando así el costoso tiempo del viaje. Direccional. 
El tipo de pozo direccional es un criterio importante cuando se deben de seleccionar las características de las barrenas ya sea tricónicas o de diamante. Una ventaja específica de las barrenas de diamante es su gran alcance y sus posibilidades para perforar en sentido horizontal. 
Estos tipos de pozos, por lo general, tienen secciones homogéneas muy prolongadas que son óptimas para las aplicaciones con barrenas de diamante. La densidad de los cortadores, la cantidad de aletas, el control de la vibración y el calibre de la barrena son, todos ellos, parámetros de selección fundamentales cuando se estudian las aplicaciones direccionales. Economía. El medio ambiente económico es un factor fundamental para la aceptación de los diseños con diamante, siempre y cuando los análisis de costos así lo determinen; en caso contrario se debe seleccionar barrenas tricónicas.

miércoles, 21 de noviembre de 2012

APLICACIONES - III

· ¿Qué volumen de gas hidrógeno a presión atmosférica se requiere para llenar un tanque de 5000 cm3 bajo una presión manométrica de 5.5 kg/cm2? Presión atmosférica – 1.033 kg/cm2

· Con base en la recomendación del API (tema 9.5) realizar el siguiente cálculo: Si un acumulador (botella) de la unidad de 3000 lb/pg2, se le suministra inicialmente una presión de precarga igual a 1000 lb/pg2 ¿Cuál es el volumen de fluido hidráulico aprovechable si se deja una presión remanente de 1200 lb/pg2

Operaciones:
Capacidad del acumulador -10 gal.

martes, 20 de noviembre de 2012

APLICACIONES - II


Operaciones:
Volumen para abrir y cerrar los preventores y válvula hidráulica.
                                                                     Abrir                              cerrar
Preventor anular                                        10.34 gal                        12.12 gal
Preventor de ariete                                      5.2gal                            5. 5 gal
Preventor de ariete                                      5.2 gal                           5.5 gal
Válvula hidráulica                                        0.5 gal                           0.5 gal
Total                                                           21.24 gal                   23.62 gal

lunes, 19 de noviembre de 2012

APLICACIONES - I

· Disponga de un arreglo de preventores de la última etapa de perforación del área en que se encuentre laborando y analice el conjunto del sistema.
Arreglo de preventores:

Posición del ariete ciego:
Ventajas                                                                                                Desventajas










· Calcular la cantidad de fluido hidráulico y el número de acumuladores con base en los tres criterios.

Datos:
Arreglo: 13 5/8 - 5M – RSRA
Unidad de cierre: 3000 psi (Koomey)
Precarga: 1000 psi
Capacidad total del acumulador: 10 gal.
Válvula hidráulica en la línea de estrangulación.
Preventor de ariete tipo “U”, Cameron.
Preventores anular (esféricos) tipo “D”, Cameron.

domingo, 18 de noviembre de 2012

INSPECCIÓN EN LA INSTALACIÓN DE LAS CONEXIONES SUPERFICIALES DE CONTROL

Una de las actividades críticas y de mayor importancia en materia de seguridad del personal y del pozo, es la de realizar las inspecciones durante la instalación de las conexiones superficiales de control, así como verificar que las pruebas hidráulicas se realicen de acuerdo a los procedimientos de campo establecidos, ya que es la única forma de asegurarnos que nuestro equipo se encuentra en condiciones operativas adecuadas para cuando se requiera su uso. Para tener una información completa sobre la inspección que se debe realizar en la instalación de las conexiones superficiales de control, se recomienda consultar en el manual del perforador (Capítulo 10) las normas y recomendaciones aplicadas a dicho sistema de control. 

Actividad 

Con base en la consulta de las normas y recomendaciones para las conexiones superficiales de control, realizar una lista de verificación de la instalación del sistema de control.

sábado, 17 de noviembre de 2012

DESVIADOR DE FLUJO (DIVERTER)

El sistema desviador de flujo se emplea como medio de control del pozo, antes de cementar la tubería de revestimiento superficial e instalar el conjunto inicial de preventores, con el fin de poder manejar los posibles flujos de formaciones muy someras, derivándolas a sitios alejados del equipo y del personal. Los desviadores no han sido diseñados para cerrar el pozo ni detener el flujo sino más bien para permitir la desviación del flujo hacia una distancia segura y controlada. 
Uno de los mejores diseños del sistema de desviador de flujo, es que en el momento de cerrar el desviador de flujo automáticamente debe de abrirse la válvula (s) en su parte inferior. Se recomienda que las salidas laterales del desviador sean de un diámetro interior mínimo de 10” en equipo terrestre, y de 12” en equipo marinos. Una válvula de 10” tiene un área de flujo de 78.54 pg2, que es el equivalente a dos válvulas de diámetro interior aproximadamente de 7”, las cuales se pueden ocupar en caso de no tener una de 10”. Cuando se instale un sistema de desviador de flujo, se recomienda lo siguiente: 
· Adiestrar al personal para su operación. 
· Para garantizar el funcionamiento correcto del sistema, se debe de activar cuando se instale y si es necesario a intervalos apropiados durante las operaciones, en este último caso se puede aprovechar para realizar simulacros. 
· Debe bombearse fluido a través de cada línea desviadora, para verificar que no se encuentren tapadas.

viernes, 16 de noviembre de 2012

CÁLCULO DEL VOLUMEN DE FLUIDO HIDRÁULICO EN LA UNIDAD DE CIERRE

El cálculo del volumen de fluido hidráulico en la unidad de cierre nos proporciona el número de acumuladores necesarios que debe tener el sistema, para que permita almacenar fluidos con la energía suficiente para cerrar todos los preventores y abrir la válvula hidráulica de la línea de estrangulación y se registre una presión final de los acumuladores (presión de la unidad de cierre) de por lo menos 200 lb/pg2 mayor que la presión de precarga, (RP-53-API)*. Para calcular el volumen de fluido hidráulico se aplican los criterios de: presiones normales, alta presión y el canadiense, así como la siguiente formula de la ley de Boyle (Fig. 9.3).
*Las fuentes de energía (eléctrica y neumática) se aíslan para realizar la prueba.
Figura 9.3 Volumen de fluido disponible por botella, manteniendo 200 lb/pg2 arriba de la presión deprecargo.

jueves, 15 de noviembre de 2012

Tipo de roca

Si se cuenta con datos precisos sobre las formaciones que deberán perforarse en el intervalo objetivo, se podrá seleccionar con más facilidad la estructura óptima de corte y la densidad que requiere la aplicación, ya sea barrena tricónica o de diamante.

martes, 13 de noviembre de 2012

LEY DE LOS GASES - I

En el comportamiento térmico de la materia, es de nuestro interés cuatro cantidades medibles: la presión, el volumen, la temperatura y la masa de una muestra. En este tema sólo nos enfocaremos a la presión y volumen con respecto a un gas, donde sus moléculas individuales están tan distantes entre si que la fuerza de cohesión que existe entre ellas es generalmente pequeña. 
Un gas ideal se considera como aquel en donde su comportamiento no se ve afectado en lo absoluto por fuerzas de cohesión o volúmenes moleculares. 
Aunque no existen gases reales considerados como ideales, en condiciones normales de temperatura y presión, el comportamiento de cualquier gas es muy parecido al comportamiento de un gas ideal. Las observaciones experimentales de los gases reales han conducido a deducciones de leyes físicas generales que rigen su comportamiento térmico. Una de las primeras mediciones térmica de los gases fue realizada por Roberto Boyle, demostrando, en 1660, que el volumen de un gas es inversamente proporcional a su presión, considerando la temperatura y masa constante.

Ley de Boyle: Siempre que la masa y la temperatura de una muestra de
gas sea constante, el volumen del gas es inversamente
proporcionalmente a su presión absoluta.

lunes, 12 de noviembre de 2012

PRUEBAS OPERATIVAS DE LOS PREVENTORES CON LA UNIDAD DE CIERRE (API) - II

Estas operaciones de pruebas realizadas en el preventor son complemento de las pruebas hidráulicas programadas en el arreglo de preventores. Con base en las pruebas descritas, se adquieren conocimientos y experiencia, para cuando se requiera verificar la comunicación de las cámaras de presión de cierre y de abrir. 
Cuando un preventor se encuentra cerrado para control del pozo, se pueden verificar si hay fugas, observando el depósito de fluido hidráulico en donde se encuentran instaladas las válvulas de cuatro vías, verificando si hay salida de fluido hidráulico en algunas de ellas. Esta misma prueba se realiza cuando las válvulas de cuatro vías se mantienen en posición abierta.

sábado, 10 de noviembre de 2012

PRUEBAS OPERATIVAS DE LOS PREVENTORES CON LA UNIDAD DE CIERRE (API) - I

Para una aceptación de campo, esta prueba debe llevarse a cabo cada vez que se ponga en servicio un preventor de reventones, nuevo o rehabilitado, o un preventor de reventones de condición desconocida. Inspección para determinar si hay fugas en el sello de la cámara de cierre. 

· Desconecte la línea de abrir. 

· Aplique la presión de cierre (presión recomendada por el fabricante para el sistema hidráulico del preventor.) 

· Observe el puerto de la línea de abertura para ver si hay fugas de fluido, no hacerlo en forma directa. · Libere la presión de cierre.

 · Conecte la línea de abertura y quite la línea de cierre para la siguiente operación. Inspección para determinar si hay fugas en el sello de la cámara de abrir. 

· Aplique la presión de abrir.

 · Observe el puerto de la línea de cierre para ver si hay fugas de fluido. 

· Libere la presión de abrir. 

· Conecte la línea de cerrar. Nota. Recuerde cerrar los preventores de arietes para tubería con T.P en el pozo y en el caso de los arietes ciegos, operarlos para su cierre inicialmente con presión baja y posteriormente incrementar su presión de cierre normal, con la finalidad de no dañar los elastómeros.

viernes, 9 de noviembre de 2012

Recomendaciones en el requerimiento de preventores.

Cuando se esté perforando la etapa de yacimiento, se deberán utilizar arietes de corte en sustitución de los ciegos. 
· Si se utilizan sartas combinadas, los arietes para la tubería de diámetro mayor se instalarán en el preventor inferior, y los de diámetro menor en el superior. Ambos arietes pueden sustituirse por el tipo de variable. · Debe observarse que si ocurre un brote cuando se esté sacando del pozo la tubería de perforación de diámetro menor, sólo se dispondrá del preventor anular y uno de arietes. 
Es entonces que no será posible intercambiar arietes de ese mismo diámetro de tubería de perforación en algún otro preventor, por lo que será conveniente ubicar los arietes ciegos en la parte superior del preventor doble, aun cuando las desventajas señaladas anteriormente serían mayores por tener doble brida adicional. Una opción practica, sin cambiar la posición establecida, recomienda bajar una parada de tubería del diámetro mayor para cerrar el preventor inferior y cambiar arietes al superior

jueves, 8 de noviembre de 2012

Desventajas

· Cuando el preventor ciego esté cerrado, no se tendrá ningún control si ocurre alguna fuga en el preventor inferior en el carrete de control. 

· Lo que se manejó como ventaja de que los arietes ciegos se pueden cambiar por arietes para tubería de perforación, funciona ahora como desventaja, ya que en el caso extremo de querer soltar la tubería no se dispondría de una válvula maestra que cerrará totalmente el pozo.

miércoles, 7 de noviembre de 2012

Ventajas

· Está demostrado estadísticamente que la mayor parte de los brotes ocurren con la tubería dentro del pozo, es entonces que el preventor inferior hace la función de válvula maestra por estar conectada directamente a la boca del pozo. 

· Se puede cambiar los arietes ciegos por arietes para la tubería de perforación. 

· La tubería de perforación puede suspenderse del preventor inferior y cerrar totalmente el pozo.

 · Cuando el pozo esta cerrado con el preventor inferior permite efectuar reparaciones y corregir fugas del conjunto de preventores; además del cambio de unidades completas. 

· Cuando el preventor ciego está cerrado, se puede operar a través del carrete de control.

 · Si se considera conveniente se puede introducir tubería de perforación a presión dentro del pozo, utilizando el preventor inferior y alguno de los superiores. Previo cambio de los ciegos por arietes para tubería de perforación.

· Lo anterior tiene la gran desventaja de deteriorar los arietes inferiores, los cuales no es posible cambiar, por lo que debe procurarse operarlos sólo en caso necesario, ya que como se indicó, deben considerarse como válvula maestra.

martes, 6 de noviembre de 2012

ANÁLISIS DE UN ARREGLO DE PREVENTORES

Es condición necesaria que todo arreglo de preventores que se encuentre en el pozo sea analizado en todo su conjunto para tener un conocimiento efectivo del mismo y tomar la decisión adecuada cuando se presenten operaciones imprevistas en un descontrol del pozo y de esta forma evitar o disminuir los riesgos. A continuación se proporciona un ejemplo del análisis de un arreglo de preventores, tomando en cuenta la posición del ariete ciego. 
Es de considerar que se pueden tener otras observaciones de acuerdo a la experiencia del área y de las operaciones de cada uno de los arreglos. Análisis del arreglo 13 5/8”- 5M-R S R A (Fig.9.1)

lunes, 5 de noviembre de 2012

ARREGLOS DE PREVENTORES (API) - II


Los componentes principales de arreglo de preventores de reventones y
sus códigos son los siguientes:
A = Preventor de reventón, tipo anular
R = Preventor de reventones de ariete sencillo (con un juego de arietes ciego o
para tubería según la preferencia del operador.)
Rd = Preventor de reventones, con dos juegos de arietes, colocados según la
preferencia del operador.
Rt = Preventor de reventones, con tres juegos de arietes, colocados según la
preferencia del operador.
S = Carrete de perforación con conexiones de salida lateral, para las líneas de
estrangulación y de matar.A = cabeza rotatoria.
*M = presión de trabajo = 100 lb/pg2.
*K = 1000

No olvidar que al usar la codificación API se enlistan de abajo hacia arriba. Como se ha especificado en los arreglos API, no se menciona la posición del ariete ciego, por que esta sujeto a la experiencia del área y condiciones del pozo, para tomar la decisión de donde ubicarlo. También se debe de considerar
que entre los arreglos con una misma presión de trabajo, la clave que existe en los cambios de uno a otro, es la posición del carrete de perforación ó de control y la instalación de un preventor doble de arietes es opcional.

domingo, 4 de noviembre de 2012

ARREGLOS DE PREVENTORES (API) - I

En el manual para Perforador-Cabo, se han definido los diferentes tipos de arreglos de preventores de reventones con base en la clasificación del API para las clases 2M, 3M, 5M, 10M, y 15M, no olvidando que su adecuación es en el cumplimiento de los requerimientos del pozo, para así obtener de ellos la seguridad y eficiencia requerida. 
El criterio para seleccionar el arreglo de preventor debe considerar la magnitud del riesgo expuesto y el grado de protección requerida, tales como: 

· Presiones de formación anormales. · Yacimiento de alta productividad o presión. 

· Áreas densamente pobladas. ·

 Grandes concentraciones de personal y equipo, como el caso de barcos y plataformas marinas (se necesitan arreglos más completos y como consecuencia aumenta su costo). 

· Áreas sensibles a impactos ambientales.

· Presiones de formación normales.

sábado, 3 de noviembre de 2012

APLICACIONES - III

Aplicaremos la fórmula simplificada, quedando como ejercicio aplicar la fórmula original como comprobación.

P = 2500.0 m
Pl = 2500.0 + 28 = 2528.0 m
PT.P. = 29.05 kg/m x 0.8115 = 23.574 kg/m
PD.C. = 219.0 kg/m x 0.8115 = 177.72 kg/m
PH.W. = 74.5 kg/m x 0.8115 = 60.457 kg/m
A = 2 x 8000 kg = 16,000 kg.
Pf = 80.0 m x 177.72 kg/m + 110.0 m x 60.457 kg/m = 20,868.0 kg.
C = 20,868 x ÷ø

Esta operación se puede realizar en forma directa, iniciando en el producto 0.5, terminando con la multiplicación de la profundidad y dividiendo entre 500,000

viernes, 2 de noviembre de 2012

APLICACIONES - II


· Encontrar el trabajo realizado del cable de perforación en las siguientes operaciones:

Viaje redondo: 2500.0 m
Viaje redondo: 3020.0 m
Perforando: de 2500.0 m a 3020.0 m

Datos:
T.P.: 5” – 29.05 kg/m
T.P. extrapesada (H.W.): 5” x 3” – 74.50 kgs/m – 110.0 m
Lastrabarrenas: 8” x 3” – 219.0 kg/m – 80.0 m (herramienta)
Barrena P.D.C.: 12”
Lodo: 1.48 gr/cm3
Peso del aparejo: 8 tons.


Operaciones:
Trabajo de viaje redondo a 2500.0 m
Ff = 1 -
7.85
1.48
= 0.8115

jueves, 1 de noviembre de 2012

APLICACIONES - I


· Con la siguiente información realizar un programa de deslizamiento y corte del cable de perforación.

Diámetro del cable: 1 1/2”
Altura del mástil: 43.28 m (142 pies)
Factor de seguridad: 5
Malacate: National 1625-DE
Diámetro del tambor: 36”
Operaciones:
Meta de servicio (gráfica 8.1): 40 x 100 = 4000 Ton x Km
Meta de servicio con factor de seguridad de 5 (gráfica 8.2): 4000 Ton x Km x 1.0
= 4000 Ton x Km
Corte del cable: 27.0 m
Programa:

Operación 1 Operación 2
Acumular 2000 Ton x km Acumular 2000 ton x km
Deslizar 13.5 m de cable para las 4000 ton x km
Deslizar 13.5 m y cortar 27.0 m de
cable.