Mostrando entradas con la etiqueta HIDRÁULICA. Mostrar todas las entradas
Mostrando entradas con la etiqueta HIDRÁULICA. Mostrar todas las entradas

viernes, 15 de junio de 2012

Aplicaciones II

· Con la información anterior realizar un programa hidráulico para perforar hasta 3650.0 m, con un fluido de perforación de 1.68 gr/cm3 viscosidad plástica de 36 cps y punto de cedencia 12 lb/100 pie2
 · Con la información del programa de perforación de pozo del área en donde labora, realice un programa hidráulico y compárelo con el diseño del programa del pozo.

jueves, 14 de junio de 2012

Aplicaciones I

Aplicando la tabla 4.1, para este caso se busca en la columna de tres, el valor más próximo al área calculada, siendo: 3T –15/32”. Si se desea usar toberas de diferentes diámetros, se seleccionan las tres con la condición que la suma de sus áreas debe ser aproximadamente a la calculada. 
Cuando se tienen más de tres toberas, se divide el área calculada entre el número de toberas para encontrar el área de cada una o de una forma de ensayo y error selecciónelas con la tabla para diferentes diámetros, no olvidando la condición antes mencionada. 
Nota.- Continuar con los siguientes cálculos aplicando las fórmulas que se estudiaron en el manual del Perforador y terminar con la información solicitada en el formato

miércoles, 13 de junio de 2012

Operaciones 2:

· En el espacio anular entre T.P. y agujero (se tomará en esta forma para hacer un cálculo más práctico).
4. Total de la caída de presión en el sistema de circulación: 964 lb/pg2
En este caso seleccionamos una caída de presión para la barrena de 926 lb/pg2. Para el H.P. hidráulico se tiene una presión de bombeo muy cercana a la presión máxima de la bomba.
5. Diámetro de las toberas

domingo, 10 de junio de 2012

Operaciones 1:

1. Llenar el formato con la información anterior y posteriormente con los cálculos realizados.
 2. Gasto de bomba para perforar. Con base en la velocidad de penetración
3. Caída de presión por fricción en el sistema de circulación: · En el equipo superficial

sábado, 9 de junio de 2012

APLICACIONES

Una placa de 20 cm2 de área está separada a 1 cm. de otra placa fija. Calcular la viscosidad del fluido en centipoise, si se requiere una fuerza de 100 dynas para mover la placa superior a una velocidad constante de 10 cm/seg.
Con la siguiente información del pozo, realizar un programa hidráulico de 2100.0 m a 3000.0 m

viernes, 8 de junio de 2012

PROBLEMAS MÁS COMUNES EN LA OPTIMIZACIÓN HIDRÁULICA.

Los problemas que se puedan presentar para la optimización hidráulica, concentrándose más en los criterios hidráulicos del impacto hidráulico y el H.P. hidráulico, se relacionan con las siguientes limitaciones: 
· Capacidad de las bombas de lodos. 
· Densidad y propiedades reológicas altas, del fluido de perforación. 
· Presión de trabajo de alguna parte del equipo superficial (Por ejemplo: tubo lavador). 
· Profundidad del pozo, mayores longitudes de tubería de perforación. 
· Disminución del diámetro de la tubería. 
Ante estas consideraciones, se conocen actualmente cinco parámetros hidráulicos (tema 4.2) para que de acuerdo a sus conocimientos y experiencia los aplique y cuando menos estar en uno de ellos, además de que posee el conocimiento del lineamiento de gasto normal para perforar, que es el inicio para obtener una eficiente hidráulica.

jueves, 7 de junio de 2012

DISEÑO DE UN PROGRAMA HIDRÁULICO PARA PERFORAR III

Debido a que existen varios autores de los modelos matemáticos, basando sus estudios en el tipo de fluido, patrón de flujos, propiedades reológicas, etc. Para el propósito de nuestro manual expondremos un ejemplo de cálculo tomando el modelo de la compañía Smith Tool para fluidos No-Newtonianos y flujos turbulentos. Considerando que dicho modelo era aplicado en la regla de cálculo hidráulico, que en años anteriores en el inicio de la hidráulica se usaron en el campo y por que generalmente en el interior de la sarta se tiene flujo turbulento, siendo el espacio anular, entre T.P. y agujero en donde podría haber flujo turbulento o laminar*. Modelo matemático para el cálculo de la caída de presión por fricción en el interior de la tubería y espacio anular.

Nota: Dichas fórmulas tienen algunos cambios en las unidades con respecto a la original, para hacerlas más prácticas y en el caso de la primera se ha estructurado en dos factores para evitar operaciones repetitivas.
 * El número de Reynolds, especifica el tipo de flujo.

miércoles, 6 de junio de 2012

DISEÑO DE UN PROGRAMA HIDRÁULICO PARA PERFORAR II

Los pasos a seguir en forma general, para el diseño del programa hidráulico, son: 
1. Llenar el formato con los datos requeridos. 
2. Seleccionar el gasto de bomba y emb/min. para perforar, con base a la determinación del gasto normal para perforar. Verificar la emb/min máxima de la bomba en donde se decide si se tiene que trabajar en paralelo. 
3. Calcular la caída de presión por fricción en el sistema de circulación: Equipo superficial, tubería de perforación, tubería extrapesada (H.W.), lastrabarrenas y espacio anular. 
4. Sumar las caídas de presión en el sistema de circulación, y por medio de una regla de tres simple calcular la presión para la barrena en los criterios del impacto hidráulico y H.P. hidráulico, y con base a la presión máxima de la bomba seleccione el criterio más aceptable. Recuerde que la presión de bombeo será igual a la suma de estas dos presiones. Si la presión de bombeo es demasiada alta o próxima a la presión máxima de la bomba, seleccione una presión de bombeo de acuerdo a las condiciones de su equipo y restarle la caída de presión total, siendo éste valor la presión disponible para la barrena.
5. Teniendo la caída de presión para la barrena seleccionada, se calculan los diámetros de las toberas y el resto de los parámetros hidráulicos expuestos en el manual del perforador.

martes, 5 de junio de 2012

DISEÑO DE UN PROGRAMA HIDRÁULICO PARA PERFORAR I

Realizar un diseño del programa hidráulico en las diferentes etapas del programa de perforación, es tratar de cumplir con la mayor parte de los parámetros de la optimización hidráulica y obtener una mayor velocidad de penetración. Los cuales mencionados en orden jerárquico son: 
· Impacto hidráulico 
· Caballos de fuerza hidráulico (H.P. hidráulico) 
· Índice de limpieza en el fondo del agujero (H.P./pg2 ) 
· Velocidad del lodo en las toberas. 
· Velocidad anular óptima. 
Un programa hidráulico nos proporciona información para evitar altas caídas de presión en el sistema de circulación y evitar problemas en el equipo superficial, así como también mayor esfuerzo en la bomba de lodo y por consecuencia mayor mantenimiento, etc. El diseño de un programa hidráulico, en condiciones normales de perforación, se puede realizar cada 500 o 1000 m de profundidad. (En el caso de una barrena PDC, se considera la profundidad a perforar), de acuerdo al cambio de densidades y de la reología del lodo, así como en el cambio de diámetros interiores de la sarta de perforación.

domingo, 3 de junio de 2012

Parámetros hidráulicos IV

Esto significa que el 35% de la presión limitada o presión de bombeo máximo deseado, es de pérdida de presión en el sistema de circulación y el 65% restante para aplicarlo en la barrena. En la gráfica 4.2 se muestra la confirmación de los métodos I.H. y H.P.H. en sus porcentajes de optimización.

sábado, 2 de junio de 2012

Parámetros hidráulicos III

Algunos piensan, que en la teoría del impacto hidráulico, la remoción de recortes depende de la fuerza con la que el fluido pega en el fondo del agujero y tal vez sea por el resultado de la fórmula en lbs. Pero si consideramos que en la fórmula del impacto, su origen es la ecuación Fuerza = masa x aceleración (F = m x a), se puede tener el concepto de impacto hidráulico, como la fuerza en lbs. que pasan en la sección de las toberas en la unidad de tiempo. Caballos de fuerza hidráulicos.- Los H.P. hidráulicos pueden definirse como la velocidad a la que el fluido hace trabajo en el sistema de circulación. En realidad los caballos de fuerza son una velocidad definida de hacer trabajo. En forma matemática, se representa como:

viernes, 1 de junio de 2012

Parámetros hidráulicos II

La fuerza de impacto en la ecuación depende del peso del lodo, entre más alto, mayor el impacto. Sin embargo, el peso del fluido no se cambia con ese propósito. Por esa razón se considera una constante para cualquier sistema. Para obtener éste parámetro, se requieren las siguientes condiciones
Donde: Ps = Caída de presión por fricción en el sistema. Pm = Presión manométrica o de bombeo. Pb = Caída de presión en la barrena. Lo anterior establece que para una presión limitada en la superficie, la pérdida de presión en el sistema de circulación deberá ser el 51% de la presión en la superficie y el 49% restante de la presión disponible se aplica a la barrena para el impacto óptimo.

miércoles, 30 de mayo de 2012

Parámetros hidráulicos I

Impacto hidráulico.- La fuerza del impacto hidráulico se define como la relación del cambio del momento del fluido con el tiempo. El momento del fluido a través de la barrena es un producto de la densidad, gasto y velocidad del fluido en las toberas. Representado en forma matemática:
Donde:
IH. = Fuerza de impacto hidráulico, en lbs.
D.L.= Densidad del fluido de perforación, en lbs/gal.
Q = Gasto de bomba, en gal/min.
Vt = Velocidad del fluido en las toberas, en pies/seg.
g = Constante de la aceleración de la gravedad = 32.17 pies/seg2.
60 = Constante de conversión de min. a seg.



martes, 29 de mayo de 2012

Fricción en las tuberías

En una tubería recta lisa, en la que el flujo laminar de un líquido se lleva a cabo, la resistencia al escurrimiento o flujo se origina por el esfuerzo tangencial o cortante de la viscosidad entre las partículas que se mueven en recorridos paralelos con diferentes velocidades. En la pared de la tubería, las partículas se adhieren a ella y no tienen movimiento. Las partículas en movimiento en la tubería están sujetas a un esfuerzo cortante viscoso, que disminuye conforme se aproxima al centro de la tubería. La variación de la velocidad a través de la tubería está totalmente determinada por el esfuerzo cortante viscoso entre las capas imaginarias en movimiento del líquido. Con frecuencia esta resistencia al flujo se describe como originada por la fricción en las paredes, o fricción en la tubería, pero el término se presta a confusiones, porque la resistencia es totalmente de una naturaleza viscosa. 
Si el flujo es turbulento, la variación de la velocidad a través del tubo, no queda determinada entonces únicamente por la viscosidad, sino que depende de la cantidad y resistencia de la turbulencia. Sin embargo, la cantidad presente de esfuerzo cortante viscoso es aumentada por los innumerables remolinos o vórtices que acompañan a dicha turbulencia, y las tuberías con paredes ásperas o incrustadas tienden a incrementar esta turbulencia. Además, como en el escurrimiento laminar, la resistencia al escurrimiento es totalmente un fenómeno de la viscosidad, aunque comúnmente se refiera como debida a la fricción de la tubería.

lunes, 28 de mayo de 2012

Patrones de flujo II

En el flujo turbulento, las partículas de fluido ya no se transmiten en línea recta dentro de la tubería. No hay un patrón de flujo preciso. Sin embargo, en general todas las partes de las corrientes de flujo están desplazándose a la misma velocidad, aproximadamente. En este caso la viscosidad afecta únicamente el punto donde se inicia la turbulencia y tiene poco efecto en las pérdidas de presión cuando el fluido está en turbulencia. No hay una definición exacta de turbulencia. Se puede describir como una evolución de capas precipitadas, flujo desordenado, o patrón de flujo irregular. La figura 4.2 muestra un perfil de la velocidad del fluido turbulento y las fluctuaciones del mismo que causan la pérdida de presión en la turbulencia. Debido a que los patrones para el flujo turbulento no son constantes, es imposible construir un perfil exacto de la velocidad del fluido o de las fluctuaciones de éste.

domingo, 27 de mayo de 2012

Patrones de flujo I

En general se estudian dos tipos de comportamiento de fluidos: Newtonianos y nonewtonianos. Sabemos que el newtoniano es típico del agua, donde las propiedades del líquido no cambian. 
El término No-newtoniano, simplemente describe todos los líquidos que no se comportan como el agua. No todos los fluidos se comportan como fluidos Bingham, pero el viscosímetro giratorio se calibra para dar información del comportamiento Bingham, en el caso de nuestro fluido de perforación. Los patrones de flujo en un sistema de circulación puede ser tapón, laminar o turbulento. 
El flujo de tapón se encuentra en los trabajos de cementación, pero muy raras veces en las operaciones de perforación. Es por eso que el presente estudio se limitará a los flujos laminares y turbulentos. Los patrones de flujo, como anteriormente se dijo, se clasifican en: laminares o turbulentos. El flujo plástico se incluye como un tipo especial del flujo laminar, las partículas individuales en el fluido se mueven hacia adelante en línea recta y la velocidad en la pared es cero con cualquiera de los dos patrones. 
La velocidad máxima se logra en un punto equidistante de las paredes. La región de baja velocidad es una función directa de cuanto se desvía un fluido dado del fluido verdadero, o la magnitud de la viscosidad. Por lo tanto la velocidad en cualquier punto alejado de la pared es proporcional a la relación promedio de volumen de flujo e inversamente proporcional a la viscosidad.

sábado, 26 de mayo de 2012

Clasificación de los fluidos

Los fluidos pueden clasificarse en Newtonianos y No-Newtonianos. Los gases y los líquidos ligeros se aproximan a los fluidos Newtonianos, mientras que los líquidos pesados son No-Newtonianos. 
Analizando la gráfica 4.1 se puede decir, que son fluidos Newtonianos, aquellos líquidos cuya “viscosidad es constante” a cualquier temperatura y presión dadas, como el agua, glicerina, aceites para motor, kerosina y líquidos similares. Vemos que el comportamiento de la gráfica es una recta en donde el esfuerzo de corte es directamente proporcional a la velocidad de corte (m=viscosidad), en condiciones de flujo laminar. Considerando la misma figura, tenemos, que los fluidos No-Newtonianos, son aquellos cuya viscosidad no es constante a la temperatura y presión de que se trata, si no que depende del flujo mismo como factor adicional. Entre estos fluidos, tenemos los líquidos plásticos de Bingham. La mayor parte de los fluidos de perforación son suspensiones coloidales y/o emulsiones que se comportan como fluidos plásticos o No-Newtonianos, y se asemejan al modelo propuesto por Bingham.

viernes, 25 de mayo de 2012

PARÁMETROS PARA LA OPTIMIZACIÓN HIDRÁULICA III


  • Esfuerzo de corte y velocidad de corte.- Cuando un fluido está fluyendo, existe una fuerza en el fluido que se opone al flujo, a esta fuerza se le conoce como “esfuerzo de corte” y puede considerarse como una fuerza friccional que proviene del deslizamiento de una capa del fluido sobre la otra. La velocidad a la cual se mueve a través de sus capas vecinas se conoce como “velocidad de corte”. 
  • Reología.- Es la ciencia de la deformación y el flujo de la materia. Sus parámetros más usados son la viscosidad plástica y el punto de cedencia. 
  • Punto de Cedencia.- Es parte de la resistencia al flujo al igual que la viscosidad y es una medida de las fuerzas electroquímicas de las cargas eléctricas localizadas en la superficie de los sólidos en el fluido y puede ser controlado mediante un tratamiento químico y mecánico apropiado.