miércoles, 7 de noviembre de 2012

Ventajas

· Está demostrado estadísticamente que la mayor parte de los brotes ocurren con la tubería dentro del pozo, es entonces que el preventor inferior hace la función de válvula maestra por estar conectada directamente a la boca del pozo. 

· Se puede cambiar los arietes ciegos por arietes para la tubería de perforación. 

· La tubería de perforación puede suspenderse del preventor inferior y cerrar totalmente el pozo.

 · Cuando el pozo esta cerrado con el preventor inferior permite efectuar reparaciones y corregir fugas del conjunto de preventores; además del cambio de unidades completas. 

· Cuando el preventor ciego está cerrado, se puede operar a través del carrete de control.

 · Si se considera conveniente se puede introducir tubería de perforación a presión dentro del pozo, utilizando el preventor inferior y alguno de los superiores. Previo cambio de los ciegos por arietes para tubería de perforación.

· Lo anterior tiene la gran desventaja de deteriorar los arietes inferiores, los cuales no es posible cambiar, por lo que debe procurarse operarlos sólo en caso necesario, ya que como se indicó, deben considerarse como válvula maestra.

martes, 6 de noviembre de 2012

ANÁLISIS DE UN ARREGLO DE PREVENTORES

Es condición necesaria que todo arreglo de preventores que se encuentre en el pozo sea analizado en todo su conjunto para tener un conocimiento efectivo del mismo y tomar la decisión adecuada cuando se presenten operaciones imprevistas en un descontrol del pozo y de esta forma evitar o disminuir los riesgos. A continuación se proporciona un ejemplo del análisis de un arreglo de preventores, tomando en cuenta la posición del ariete ciego. 
Es de considerar que se pueden tener otras observaciones de acuerdo a la experiencia del área y de las operaciones de cada uno de los arreglos. Análisis del arreglo 13 5/8”- 5M-R S R A (Fig.9.1)

lunes, 5 de noviembre de 2012

ARREGLOS DE PREVENTORES (API) - II


Los componentes principales de arreglo de preventores de reventones y
sus códigos son los siguientes:
A = Preventor de reventón, tipo anular
R = Preventor de reventones de ariete sencillo (con un juego de arietes ciego o
para tubería según la preferencia del operador.)
Rd = Preventor de reventones, con dos juegos de arietes, colocados según la
preferencia del operador.
Rt = Preventor de reventones, con tres juegos de arietes, colocados según la
preferencia del operador.
S = Carrete de perforación con conexiones de salida lateral, para las líneas de
estrangulación y de matar.A = cabeza rotatoria.
*M = presión de trabajo = 100 lb/pg2.
*K = 1000

No olvidar que al usar la codificación API se enlistan de abajo hacia arriba. Como se ha especificado en los arreglos API, no se menciona la posición del ariete ciego, por que esta sujeto a la experiencia del área y condiciones del pozo, para tomar la decisión de donde ubicarlo. También se debe de considerar
que entre los arreglos con una misma presión de trabajo, la clave que existe en los cambios de uno a otro, es la posición del carrete de perforación ó de control y la instalación de un preventor doble de arietes es opcional.

domingo, 4 de noviembre de 2012

ARREGLOS DE PREVENTORES (API) - I

En el manual para Perforador-Cabo, se han definido los diferentes tipos de arreglos de preventores de reventones con base en la clasificación del API para las clases 2M, 3M, 5M, 10M, y 15M, no olvidando que su adecuación es en el cumplimiento de los requerimientos del pozo, para así obtener de ellos la seguridad y eficiencia requerida. 
El criterio para seleccionar el arreglo de preventor debe considerar la magnitud del riesgo expuesto y el grado de protección requerida, tales como: 

· Presiones de formación anormales. · Yacimiento de alta productividad o presión. 

· Áreas densamente pobladas. ·

 Grandes concentraciones de personal y equipo, como el caso de barcos y plataformas marinas (se necesitan arreglos más completos y como consecuencia aumenta su costo). 

· Áreas sensibles a impactos ambientales.

· Presiones de formación normales.

sábado, 3 de noviembre de 2012

APLICACIONES - III

Aplicaremos la fórmula simplificada, quedando como ejercicio aplicar la fórmula original como comprobación.

P = 2500.0 m
Pl = 2500.0 + 28 = 2528.0 m
PT.P. = 29.05 kg/m x 0.8115 = 23.574 kg/m
PD.C. = 219.0 kg/m x 0.8115 = 177.72 kg/m
PH.W. = 74.5 kg/m x 0.8115 = 60.457 kg/m
A = 2 x 8000 kg = 16,000 kg.
Pf = 80.0 m x 177.72 kg/m + 110.0 m x 60.457 kg/m = 20,868.0 kg.
C = 20,868 x ÷ø

Esta operación se puede realizar en forma directa, iniciando en el producto 0.5, terminando con la multiplicación de la profundidad y dividiendo entre 500,000

viernes, 2 de noviembre de 2012

APLICACIONES - II


· Encontrar el trabajo realizado del cable de perforación en las siguientes operaciones:

Viaje redondo: 2500.0 m
Viaje redondo: 3020.0 m
Perforando: de 2500.0 m a 3020.0 m

Datos:
T.P.: 5” – 29.05 kg/m
T.P. extrapesada (H.W.): 5” x 3” – 74.50 kgs/m – 110.0 m
Lastrabarrenas: 8” x 3” – 219.0 kg/m – 80.0 m (herramienta)
Barrena P.D.C.: 12”
Lodo: 1.48 gr/cm3
Peso del aparejo: 8 tons.


Operaciones:
Trabajo de viaje redondo a 2500.0 m
Ff = 1 -
7.85
1.48
= 0.8115

jueves, 1 de noviembre de 2012

APLICACIONES - I


· Con la siguiente información realizar un programa de deslizamiento y corte del cable de perforación.

Diámetro del cable: 1 1/2”
Altura del mástil: 43.28 m (142 pies)
Factor de seguridad: 5
Malacate: National 1625-DE
Diámetro del tambor: 36”
Operaciones:
Meta de servicio (gráfica 8.1): 40 x 100 = 4000 Ton x Km
Meta de servicio con factor de seguridad de 5 (gráfica 8.2): 4000 Ton x Km x 1.0
= 4000 Ton x Km
Corte del cable: 27.0 m
Programa:

Operación 1 Operación 2
Acumular 2000 Ton x km Acumular 2000 ton x km
Deslizar 13.5 m de cable para las 4000 ton x km
Deslizar 13.5 m y cortar 27.0 m de
cable.