miércoles, 27 de marzo de 2013

CÁLCULOS DE LA TRAYECTORIA DEL POZO - V

Basándose en las ecuaciones anteriores, el cálculo de la trayectoria puede ser fácilmente obtenido en forma tabular ó puede ser programado en una calculadora de bolsillo. La Tabla 12.1 muestra una secuencia de pasos utilizados en la técnica de promedio angular para determinar las coordenadas de la trayectoria a partir de valores medidos de inclinación y dirección. *En el punto X1 (punto de inicio de desviación) introduzca el valor de cero para la inclinación en las columnas (B), (C), (E), las columnas de la (H) a la (Q) también serán cero.
** En el punto X2 (primera estación de registro direccional) introduzca el valor promedio para la inclinación (E). Utilice la dirección real en las columnas (J) y (K). No utilice el azimut promedio en la columna (K) para cálculos en el punto X2.

martes, 26 de marzo de 2013

CÁLCULOS DE LA TRAYECTORIA DEL POZO - IV

Método de ángulo promedio o del promedio angular.
Se ha reconocido que el método tangencial provoca un error por no considerar la inclinación y la dirección previas. El método de ángulo considera el promedio de los ángulos , , 1 1 a e y 2 2 a ,e sobre un incremento de longitud D2 para calcular L2, M2, y D2. Las siguientes ecuaciones son las relaciones de promedio angular y de ángulo promedio
:

lunes, 25 de marzo de 2013

CÁLCULOS DE LA TRAYECTORIA DEL POZO - III

Método tangencial. 
El método más simple utilizado por años ha sido el método tangencial. La derivación original se desconoce. El desarrollo matemático utiliza la inclinación y dirección en una estación de registro direccional A2 (Fig. 12.17) y supone que los ángulos proyectados permanecen constantes sobre todo el tramo de trayectoria precedente DM2 a A2. Los ángulos en A1 no se toman en cuenta. Se puede demostrar que la coordenada de latitud Norte/Sur L, puede ser calculada utilizando la siguiente ecuación para cada tramo DM.

domingo, 24 de marzo de 2013

CÁLCULOS DE LA TRAYECTORIA DEL POZO - II

Figura 12.17 Vista tridimensional de un pozo mostrando las componentes X,Y y Z de la trayectoria


Existen 18 ó más técnicas de cálculo para determinar la trayectoria del agujero. La principal diferencia entre dichas técnicas, es que un grupo utiliza aproximaciones de línea recta y el otro supone que el pozo es una curva y se aproxima con segmentos de curvas. Derivar cada método está fuera del alcance de este capitulo.

sábado, 23 de marzo de 2013

CÁLCULOS DE LA TRAYECTORIA DEL POZO - I

Datos e información requerida.
Para elaborar el cálculo del proyecto direccional se deberán tener los siguientes datos:
· Coordenadas del conductor (Xc, Yc).
· Coordenadas del objetivo (Xo, Yo).
· Profundidad vertical del objetivo.
Con esta información preliminar es posible determinar las siguientes incógnitas:
· Desplazamiento horizontal.
· Rumbo.
· Ángulo máximo.
Métodos del cálculo coordenadas.

 Se utiliza algún tipo de instrumento de medición, para determinar la inclinación y la dirección a diferentes profundidades (estaciones) y con esto, calcular la trayectoria. Es muy importante saber que los valores de inclinación y dirección pueden observarse a profundidades preseleccionadas. La Fig. 12.17 muestra parte de la trayectoria en la cual se han tomado registros direccionales en las estaciones A2, A3 y A4. 
En cada estación se miden los ángulos de inclinación y dirección, así como distancias entre estaciones, cada ángulo de dirección obtenido por medio de un dispositivo magnético debe ser corregido con respecto al norte verdadero y cada giroscópico debe corregirse por la inclinación. Todas las lecturas de dirección están corregidas para la declinación de la interferencia magnética, y la conversión a la inclinación es realizada por los dispositivos giroscópicos.

viernes, 22 de marzo de 2013

Consideraciones anticolisión - II

Figura 12.16 Araña a escala grande
Actualmente, existen varios programas que ofrecen un análisis anticolisión o un análisis de proximidad. El realizar estos cálculos a mano no es práctico debido a que se involucra un gran número de estaciones de registros. Uno de los análisis de proximidad más comunes es conocido como Cilindro Viajero

jueves, 21 de marzo de 2013

Consideraciones anticolisión - I

La colisión con pozos vecinos puede ser un problema cuando se perforan varios pozos a partir de una misma localización superficial, lo cual es especialmente cierto en el caso de plataformas marinas que tienen pozos adyacentes en producción y una colisión podría resultar en una situación extremadamente peligrosa. La planeación anticolisión comienza con la toma de registros de desviación exactos del pozo en cuestión y con la recolección de todos los pozos vecinos, así como de un juego completo de los programas de pozos a perforar en el futuro en la misma localización o plataforma.
Los registros y los programas de los pozos se utilizan para “mapear” el pozo propuesto con respecto a todos los existentes y a los propuestos. Estos mapas llamados comúnmente “arañas muestran la proyección horizontal de los conductores. Estas arañas generalmente están construidas a una escala pequeña par proporcionar una vista general del campo (Fig.12.15), aunque también pueden construirse en una escala mayor para permitir realizar análisis detallados de una parte específica del campo, tal como la localización superficial (Fig.12.16). La araña puede ser utilizada para trazar una trayectoria programada y analizar visualmente el riesgo de colisionar con otros pozos.
Figura 12.15 Araña a escala pequeña