martes, 2 de abril de 2013

Aspectos de operación

Dispositivos para medición de la dirección 
La trayectoria real de un pozo, se determina midiendo la inclinación y la dirección a varias profundidades. Posteriormente; se aplica esta información a uno de los métodos de cálculo presentados en la sección anterior. Esto se realiza principalmente para orientar de manera adecuada el equipo desviador, ya sea una cuchara, la tobera de una barrena de chorro, un estabilizador con excentricidad, un codo desviador o un bent housing. Anteriormente, la inclinación y dirección se determinaban con herramientas magnéticas y giroscópicas (single o multishot). Todas estas herramientas son autónomas y pueden ser alimentadas por baterías o desde la superficie. 
Las herramientas magnéticas se corrían con línea de acero, o en los lastrabarrenas cuando se están realizando viajes con la tubería. Algunas herramientas giroscópicas son corridas con cable conductor, lo cual permite que las mediciones puedan ser leídas en superficie, además de que la energía es transmitida hacia la herramienta por el mismo cable. 
Las herramientas giroscópicas son corridas con baterías. Debido al desarrollo de la tecnología de telemetría, actualmente existen otras maneras de medir la dirección, la inclinación y la cara de la herramienta, tales como arreglos de magnetómetros y acelerómetros. La energía se proporciona con baterías, cable conductor o por un generador accionado por el fluido de perforación. Si la herramienta de medición es colocada en el aparejo de fondo, cerca de la barrena, y las mediciones son tomadas durante la perforación, a ésta se le llama: herramienta de medición durante la perforación o MWD (measurement while drilling). Estos instrumentos constituyen un elemento vital para el buen desarrollo de la perforación direccional; puede decirse que conforman los ojos con los cuales, el personal encargado de las operaciones puede “ver” la trayectoria que sigue el pozo.
Los instrumentos más utilizados en la actualidad para obtener la inclinación y el rumbo de un pozo son:
· Instrumentos giroscópicos
· Herramienta de orientación direccional
· Sistemas MWD.
Con excepción de los instrumentos dotados con giroscopios, los demás necesitan de un lastrabarrena monel o antimagnético para obtener resultados confiables. Esto se debe a que pueden verse afectados por materiales metálicos cercanos (tuberías de revestimiento de pozos cercanos) o por el campo magnético terrestre.
El intervalo de registro se ha estandarizado, considerándose que es recomendable registrar a cada 30 metros de agujero desviado.

lunes, 1 de abril de 2013

CÁLCULOS DE LA TRAYECTORIA DEL POZO - X

En cuanto a cuál de los métodos proporciona mejores resultados, la tabla 12.4 compara seis de los diferentes métodos, utilizando información tomada de un pozo de prueba. Obsérvese que el método tangencial muestra un error considerable para M, L y D. Ésta es la razón por la cual ya no se utiliza este método. Las diferencias entre los método de ángulo promedio, de mínima curvatura y tangencial balanceado son tan pequeñas que cualquiera de los métodos puede ser utilizado para calcular la trayectoria.

domingo, 31 de marzo de 2013

CÁLCULOS DE LA TRAYECTORIA DEL POZO - IX


Si b es menor a 0.25 radianes, es razonable fijar F= 1.0. Una vez que F es conocida, las coordenadas Norte/Sur y Este/Oeste faltantes, así como la PVV pueden ser calculadas utilizando las siguientes ecuaciones
:
Otros métodos de cálculo que han sido comúnmente utilizados son el método tangencial balanceado, el método del radio de curvatura, el método del mercurio, el método de aceleración, el método trapezoidal y el método de promedio vectorial. Es interesante observar que los métodos tangencial balanceado, trapezoidal, de promedio vectorial y aceleración, aún cuando se obtienen de diferentes maneras, generan las mismas formulas matemáticas para las coordenadas Norte/Sur y Este/Oeste y para la PVV.

sábado, 30 de marzo de 2013

CÁLCULOS DE LA TRAYECTORIA DEL POZO - VIII

La Fig. 12.19 muestra el tramo con curvatura y las dos estaciones de registro direccional A1 y A2. Este método incluye el cambio total en el ángulo de la tubería b entre A1 y A2. El ángulo total, el cual se discute y obtiene con la siguiente sección, puede ser escrito para el método de mínima curvatura como:

ica_Petrolera_12.jpg" />
Como se muestra en la fig.12.18, los segmentos de línea recta A1B + BA2 son tangentes a los segmentos de curva A1Q + QA2 en los puntos A1 y A2. De donde se obtiene:

viernes, 29 de marzo de 2013

CÁLCULOS DE LA TRAYECTORIA DEL POZO - VII

Determinar las coordenadas de la trayectoria para los puntos de medición corregidos mostrados en la tabla 12.3.
Solución
Utilizando paso a paso el procedimiento de la tabla 12.2, se obtuvieron los resultados finales de la tabla 12.1 con los resultados finales.
Método de curvatura mínima 
El método de curvatura mínima utiliza los ángulos en A1 y A2, y supone un pozo curvado sobre el tramo o sección D2 y no en línea recta, tal como se muestra en la Fig. 12.18.

miércoles, 27 de marzo de 2013

CÁLCULOS DE LA TRAYECTORIA DEL POZO - V

Basándose en las ecuaciones anteriores, el cálculo de la trayectoria puede ser fácilmente obtenido en forma tabular ó puede ser programado en una calculadora de bolsillo. La Tabla 12.1 muestra una secuencia de pasos utilizados en la técnica de promedio angular para determinar las coordenadas de la trayectoria a partir de valores medidos de inclinación y dirección. *En el punto X1 (punto de inicio de desviación) introduzca el valor de cero para la inclinación en las columnas (B), (C), (E), las columnas de la (H) a la (Q) también serán cero.
** En el punto X2 (primera estación de registro direccional) introduzca el valor promedio para la inclinación (E). Utilice la dirección real en las columnas (J) y (K). No utilice el azimut promedio en la columna (K) para cálculos en el punto X2.