jueves, 27 de noviembre de 2014

Hidráulica óptima

La ecuación del costo por metro utilizada no incluye los costos provocados por el bombeo asociados con la optimización de la hidráulica de la barrena. Sin embargo, puesto que el costo del bombeo es generalmente pequeño comparado con el costo diario del aparejo, esto no es una limitación seria. Nelson18 demostró que los gastos debidos al bombeo se pueden relacionar con los caballos de fuerza hidráulicos desarrollados por la bomba. Observando la ecuación 1, podemos ver que el ritmo de penetración será máximo cuando el término «8 x8 sea máximo. Como se muestra en el punto Derivación de ecuaciones básicas, esto se logra seleccionando el tamaño de toberas y las condiciones de operación de bombas para que las caídas de presión a través de la barrena, Pb, estén relacionadas con la máxima presión de bombeo, Pp, por:
Rango de profundidad 
Velocidad de rotación (rpm) Peso sobre barrena por pulgada de diámetro de la barrena (1,000lb/pg) Donde m es la pendiente de una gráfica de caída de presión parásita contra gasto de flujo en papel doble logarítmico. Observe que de acuerdo con la ecuación anterior, la fuerza de impacto en las toberas, así como la función del número de Reynolds x8 es maximizada. Las consideraciones teóricas indican un valor de 1.8 para m. Sin embargo, Scott ha reportado valores calculados de m tan bajos como 1.0. La caída de presión a través de la barrena se estima a un gasto normal de circulación y a un gasto de circulación reducido, aplicando la ecuación de orificio o la regla de deslizamiento hidráulico. 
La pérdida de presión parásita total se determina como la diferencia entre la presión en la tubería vertical y la caída de presión a través de la barrena. Conociendo las caídas de presión parásita a 2 gastos se puede estimar gráficamente el exponente m (ver figura 45). El gasto de flujo óptimo y la caída de presión a través de la barrena se puede calcular con la última ecuación.

miércoles, 26 de noviembre de 2014

El desgaste de los dientes limita la vida de la barrena

Las ecuaciones analíticas, relativamente simples, para obtener la mejor combinación de peso sobre barrena y velocidad de rotación se
Donde el factor de abrasividad H, se obtiene a partir de la medida del desgaste de la barrena y la ecuación 10. Cuando se utilizan las ecuaciones para obtener el peso óptimo sobre barrena y la velocidad de rotación, el costo por metro se debe calcular para un desgaste de dientes H, de 1 y 0.95 para asegurar la validez de la suposición de que la vida de la barrena está limitada por el desgaste del diente. 
Desgraciadamente, expresiones analíticas simples para calcular el mejor peso sobre barrena constante y velocidad de rotación no se han podido obtener en el caso de que el desgaste del balero limite la vida de la barrena. 
Ante esta situación se debe construir una tabla del costo por metro aplicando lasecuaciones anteriores en forma iterativa.

martes, 25 de noviembre de 2014

Condiciones óptimas de operación: peso sobre barrena y velocidad de rotación - II

Por lo tanto se debe utilizar en la catorceava ecuación, el valor más pequeño de los dos tiempos de rotación, tb, dados por:
Una tabla de costo por pie para varias combinaciones de peso sobre barrena y velocidad de rotación, se puede generar aplicando las ecuaciones anteriores. 
La tabla 8 contiene el costo por pie para un problema ejemplo. Observe que en la tabla del costo por pie se pueden identificar rápidamente: La mejor combinación peso sobre barrena y velocidad de rotación La mejor velocidad de rotación para un peso sobre barrena dado El mejor peso sobre barrena para una velocidad de rotación dada

lunes, 24 de noviembre de 2014

Condiciones óptimas de operación: peso sobre barrena y velocidad de rotación - I

Sustituyendo en la ecuación 1, una forma integrada de las ecuación 11 y la correspondiente al costo por metro conduce a la siguiente expresión, para el costo por metro, para un peso sobre barrena por pulgada de diámetro, W/d, velocidad de rotación, N, y tiempo de rotación, tb.
Si se supone que la vida de la barrena tb, está limitada por el desgaste de los dientes o el desgaste de los baleros, entonces, el tiempo de rotación tb, se puede obtener a partir de una forma integrada de la décima y onceava ecuación.

sábado, 22 de noviembre de 2014

Derivación de ecuaciones básicas - II

Así usando los 30 puntos dato de la tabla 6 en esta ecuación tenemos:
Cuando se resuelve el sistema resultante de las ocho ecuaciones, para las ocho incógnitas, se obtienen las constantes a, a «8, para el pozo 1, las cuales se muestran en la Tabla 7. 
Los resultados obtenidos de lutítas de varios pozos de la misma área de la Costa de Louisiana, también se muestran en la tabla 7 para poder hacer una comparación de los resultados. Las derivaciones de las ecuaciones de optimización se dan en los punto Derivación de ecuaciones básicas.

viernes, 21 de noviembre de 2014

Derivación de ecuaciones básicas - I

Teóricamente se requieren sólo ocho datos puntuales para resolver las ocho constantes desconocidas ay a «8. Sin embargo, en la práctica esto sería verdad siempre y cuando la ecuación 1 representara el proceso de perforación rotatoria con una precisión del 100%, aunque esto no significa que alguna vez suceda en la realidad. 
Cuando se utilizan sólo pocos puntos de datos en el análisis de datos de campo, suelen calcularse valores negativos para una o más de las constan tes de regresión. Un estudio de sensibilidad del procedimiento de análisis de regresión múltiple indicó que el número de puntos dato requeridos para arrojar resultados significativos no sólo depende de la precisión de la ecuación 1, sino también del rango de valores de los parámetros de perforación x2 a xg. La tabla 5 resume los rangos mínimos recomendados para cada uno de los parámetros de perforación y el número mínimo recomendado de puntos dato para ser utilizados en el análisis. 
Cuando cualquiera de los parámetros de perforación x, se han mantenido esencialmente constantes a través del intervalo analizado, se debe estimar un valor para la constante de la regresión múltiple correspondiente, a, a partir de estudios históricos y el análisis de la regresión se realiza para las constantes restantes de la regresión. 
Cuando el número de parámetros de la perforación incluidos en el análisis disminuye, el mínimo número de puntos dato que se requiere para calcular las restantes constantes de regresión también disminuye (ver tabla 5). En muchas aplicaciones, datos de más de un pozo se han combinado para calcular las ocho constantes de la regresión.
El ritmo de penetración, el peso sobre barrena y la velocidad de rotación se deben monitorear a través de intervalos cortos de profundidad para asegurar que la mayoría de la información registrada sea representativa de un mismo tipo de formación. Se encontró que un intervalo de 2 a 5 pies proporciona datos representativos y todavía mantiene la cantidad de datos dentro de los límites razonables.
Datos de campo tomados en lutitas de un pozo costafuera de Louisiana se muestran en la tabla 6. Observe que las principales variables de perforación requeridas para el análisis de la regresión son: profundidad, ritmo de penetración, peso sobre la barrena por pulgada de diámetro, velocidad de rotación, desgaste de dientes (en fracción), parámetro del número de Reynolds, densidad del lodo y gradiente de presión de formación. Para calcular los mejores valores de las constantes de la regresión a «8.se utilizaron los datos mostrados, los parámetros x2 a x8 se calculan aplicando las ecuaciones 2 a 8 para cada dato de entrada.