miércoles, 4 de diciembre de 2013

Comportamiento después de la ruptura del gas - I

Tal como puede observarse en la Figura 6.4, el desplazamiento frontal es un proceso que depende mucho de la tasa de inyección y del ángulo de buzamiento. 
Si la inyección de gas se lleva a cabo a una tasa de flujo restringida y se inyecta en la parte alta de la estructura de un yacimiento suficientemente inclinado, entonces el recobro de petróleo y la eficiencia de desplazamiento, durante la etapa primaria del proceso (antes de la ruptura), será la mejor fracción del recobro total que se puede obtener. Si el sistema es horizontal o la tasa de inyección es alta, la ruptura del gas ocurrirá rápidamente y, en consecuencia, el recobro de petróleo será bajo. Este comportamiento se debe a una razón de movilidad adversa, debida al desplazamiento del petróleo por la fase de gas móvil. 
Cuando el recobro de petróleo es bajo en el momento de la ruptura, como se observa en la Figura 6.12, la fase subordinada será grande y, en muchos casos, contribuirá con más petróleo del que se obtuvo antes de la ruptura. 
Es importante notar que mientras más adverso sea el desplazamiento, la curva de flujo fracciona! se desviará más hacia la izquierda y menor será la eficiencia de desplazamiento. En general, la saturación promedio de gas para tiempos posteriores a la ruptura, S'gp, se puede calcular analíticamente aplicando la solución de Welge6, por medio de la siguiente ecuación:
La Figura 6.21 muestra una sección expandida de la curva de flujo fraccional, con el trazado de las tangentes necesarias para generarla información que se requiere al calcular la fase subordinada en el desplazamiento de petróleo por gas. Si se conoce la RGP límite, entonces se puede utilizar la ecuación RGP instantánea para determinar la relación de permeabilidades relativas que prevalece en el extremo de salida del sistema. Como la presión y temperatura del sistema son conocidas, también pueden determinarse el factor volumétrico del gas en la formación, Bg, el gas en solución, Rs, las viscosidades del petróleo y del gas, y el factor volumétrico del petróleo, B0, con lo cual podrá estimarse la relación kg /ka límite. Esto permitirá establecer una relación entre la saturación de gas y la razón kg ¡ k0 existente en las condiciones de abandono.

martes, 3 de diciembre de 2013

Comportamiento antes de la ruptura del gas - III

ya que como se considera que en el sistema sólo están fluyendo el gas y el petróleo, entonces la fracción que fluye de petróleo es (1 -fg ). En vista de la relación presentada por la ecuación 6.24, la ecuación 6.26 también puede escribirse así:
Nótese que en la ecuación 6.27, q, determinará las unidades de qa, lo cual significa que ¿1 término en el denominador es adimensional; en general, se puede utilizar cualquier sistema de unidades siempre que sea consistente. Si una fracción constante del gas producido se reinyecta, /, la ecuación 6.27 se puede modificar para incluir este término. Si en un determinado intervalo se han producido qa barriles de petróleo, el gas producido en condiciones normales será qaR. Luego, la cantidad de gas que se reinyecta será equivalente a lq0R, que en condiciones de yacimiento es BgIq0R. Luego, la ecuación 6.27 se transforma en:
Las ecuaciones 6.21-6.29 se pueden usar para estimar el comportamiento de un proyecto de inyección de gas para los casos de una inyección de gas extema y donde una fracción / del gas producido se reinyecta. La Figura 6.20 se generó de esta manera. Los volúmenes acumulados de petróleo y gas producido pueden obtenerse integrando la curva de tasa de petróleo y la de relación gas-petróleo, respectivamente, o midiendo el área bajo las curvas de la Figura 6.20. Una medida de los requerimientos de gas durante la vida del proyecto se puede obtener multiplicando la tasa de inyección por el tiempo de vida del proyecto, de tal manera que se puedan prever las fuentes de gas. Si el gas producido se recicla, los requerimientos extemos de gas serán menores. 
La Figura 6.20 también ilustra la razón gas-petróleo que resultará cuando el yacimiento, delante del frente de invasión, contenga una cantidad de gas que es igual o menor que la saturación de gas critica, es decir, cuando no exista flujo de gas. Si existe suficiente información sobre la historia de producción primaria del yacimiento y si la saturación de gas es mayor que la saturación de gas crítica al inicio del proyecto, entonces la razón gas-petróleo producida puede calcularse directamente de la ecuación razón gas-petróleo instantánea, si se conoce la saturación de gas en la vecindad de los pozos productores; por lo tanto, se puede utilizar la primera parte de la ecuación 6.18 para este propósito. 
En la práctica, a medida que el banco de petróleo se acerca a los pozos productores, la RGP caerá hasta la razón gas-petróleo en solución, Rs, y luego, aumentará rápidamente, hasta que se produzca la ruptura del gas.

lunes, 2 de diciembre de 2013

Comportamiento antes de la ruptura del gas - II

Para el caso donde no existe producción de agua, si la tasa de inyección es q, y existen condiciones de flujo continuo, entonces:
donde todas las tasas de producción están medidas en las condiciones de yacimiento. La tasa de producción de gas en condiciones de superficie viene dada por:
En esta ecuación se puede utilizar cualquier sistema de unidades consistentes. La razón gas-petróleo producida a cualquier tiempo se calcula utilizando la relación gas-petróleo instantánea, es decir:
donde las permeabilidades relativas gas-petróleo deben ser determinadas según la saturación de gas prevaleciente en la vecindad del pozo productor. Antes de la ruptura del frente, es necesario suponer que no existe gradiente de saturación entre el frente de desplazamiento y el pozo productor. Si los efectos capilares se consideran insignificantes y, además, la eficiencia volumétrica es del 100%, el tiempo en que cualquier saturación mayor que la saturación del frente alcanza el pozo productor vendrá dado por la siguiente ecuación:
te la construcción de las tangentes a la curva de flujo fraccional aplicables al sistema en estudio, como se ha ilustrado en la Figura 6.14, a la 5, de interés. A cada saturación de gas, la tasa de producción de petróleo en condiciones normales viene dada por:

domingo, 1 de diciembre de 2013

Comportamiento antes de la ruptura del gas - I

Desde el momento del inicio de la inyección hasta la ruptura, como en el caso de inyección de agua, la ecuación 6.10 debe resolverse para un rango de saturaciones de gas donde los valores sean aplicables a las relaciones de permea bilidades {.k0/kg\ como se muestra en la Figura 6.19. La Figura 6.20, tomada de Smith1, presenta el comportamiento de un desplazamiento de petróleo con gas en un sistema lineal donde la saturación de gas inicial es menor que la saturación de gas libre que existe delante del frente de invasión, esto es, Sg es menor que la saturación de gas crítica, Sgc .
En el caso ideal, durante la fase primaria del proceso se tendrá una tasa de producción de petróleo constante igual a la tasa de inyección o,, dividida por el factor volumétrico de petróleo en la formación, Ba. Si existiera una saturación de agua libre en el sistema, y se diera una producción de agua, esta teoría no sería aplicable de acuerdo con la suposición 4, ya que tendríamos el flujo de 3 fases en el sistema. En todo caso, si la producción de agua es baja, la predicción se podría manejar sin grandes errores en los cálculos. Si es elevada, se puede realizar una aproximación, considerando el agua y el petróleo como una sola fase.

sábado, 30 de noviembre de 2013

Eficiencia de desplazamiento

El método utilizado para evaluar la eficiencia del desplazamiento por gas es similar al utilizado en el desplazamiento por agua; sin embargo, debido a la alta razón de movilidad del gas con respecto a la del petróleo, dicha eficiencia es menor, a menos que durante el proceso exista considerable segregación vertical. El recobro de petróleo por gas también depende del producto de tres factores de eficiencia:
La determinación de cada uno de tales factores se basa en los procedimientos analíticos y experimentales que se discutieron en el Capítulo 5. En muchos casos se determinan individualmente y, en algunas oportunidades, se combinan dos o más procedimientos con el fin de determinar dos o más factores como uno solo. Por ejemplo, la combinación de la eficiencia de barrido areal y la eficiencia de conformación se determinan como un solo factor con el nombre de eficiencia de barrido volumétrico, Ev; es decir: Ev =EA*Ev.
Los tres factores de eficiencia aumentan a medida que progresa el desplazamiento, por lo tanto cada uno es función de los volúmenes desplazables inyectados; pero este aumento no es continuo, sino que disminuye a partir de la ruptura, o sea, cuando el gas inyectado comienza a llegar a los pozos productores. A partir de este momento, los factores de eficiencia aumentarán en forma cada vez más lenta hasta alcanzar el límite económico del proyecto. Como se mencionó anteriormente, el método de predicción produce mejores resultados cuando la razón de movilidad, es favorable, es decir, cuando es menor de uno, o igual a uno. Este nunca será el caso cuando se inyecta gas a un yacimiento de petróleo, ya que la razón de movilidad será considerablemente mayor que uno. No obstante, la teoría de avance frontal para predecir el comportamiento de la inyección de gas extema es rigurosa en su desarrollo matemático y da las mejores respuestas que cualquier otro método utilizado. 
La influencia de una razón de movilidad adversa en causar canalizaciones o adedamiento del gas se acentúa en yacimientos horizontales, pero se reduce considerablemente en aquellos que tengan una suficiente inclinación fiara que existan los efectos gravitacionales. 
Para estimar la eficiencia de desplazamiento se deben considerar dos etapas:

viernes, 29 de noviembre de 2013

Cálculo de la saturación promedio de gas en la zona invadida por la capa de gas

Analizando la ecuación 6.11 de flujo fraccional, se observa que a una determinada presión, todos los términos del lado derecho de la ecuación son constantes, con excepción de las permeabilidades de los fluidos, las cuales se supone que sólo dependen de la saturación, lo que hace posible calcular y representar los valores de fg vs Sg. Para un desplazamiento de petróleo en un yacimiento inclinado, se observa que, a bajas saturaciones de gas, los flujos fracciónales, fg, calculados serán negativos, como se muestra en la curva punteada de la Figura 6.16. Suponiendo que la saturación de gas dentro de la zona de petróleo es cero, después de calcular y construir la curva de flujo fraccional se traza una línea tangente que pase por el origen, tal como se muestra en la Figura 6.16.
Extrapolando la tangente hasta el punto que intersecta la línea que corresponde a fg =1, se determina la saturación promedio de gas, Sgp, dentro de la zona invadida de la capa de gas. Si dentro de la zona de petróleo existe una baja saturación de gas, entonces la tangente se traza desde el punto (5S = Sgl,fg =0) y no desde el origen. Sgl es la saturación de gas que existe dentro de la zona de petróleo al inicio del desplazamiento. Esto se ilustra en la Figura 6.17.

Saturación del frente de invasión - IV

Aplicando la ecuación 6.14, para valores de S^ S f )de la zona invadida, x^.aun tiempo dado, pueden ser calculadas utilizando la ecuación 6.14. Las derivadas se pueden obtener gráficamente de la curva de flujo fraccional14. Tomando saturaciones de gas entre la del frente Sgf y la máxima (1-5^ -SUK) y aplicando sucesivamente la ecuación 6.14, se puede obtener la distribución de saturación de gas en el yacimiento a un tiempo dado de inyección.